Seed size and its rate of evolution correlate with species diversification across angiosperms
نویسندگان
چکیده
Species diversity varies greatly across the different taxonomic groups that comprise the Tree of Life (ToL). This imbalance is particularly conspicuous within angiosperms, but is largely unexplained. Seed mass is one trait that may help clarify why some lineages diversify more than others because it confers adaptation to different environments, which can subsequently influence speciation and extinction. The rate at which seed mass changes across the angiosperm phylogeny may also be linked to diversification by increasing reproductive isolation and allowing access to novel ecological niches. However, the magnitude and direction of the association between seed mass and diversification has not been assessed across the angiosperm phylogeny. Here, we show that absolute seed size and the rate of change in seed size are both associated with variation in diversification rates. Based on the largest available angiosperm phylogenetic tree, we found that smaller-seeded plants had higher rates of diversification, possibly due to improved colonisation potential. The rate of phenotypic change in seed size was also strongly positively correlated with speciation rates, providing rare, large-scale evidence that rapid morphological change is associated with species divergence. Our study now reveals that variation in morphological traits and, importantly, the rate at which they evolve can contribute to explaining the extremely uneven distribution of diversity across the ToL.
منابع مشابه
Size is not everything: rates of genome size evolution, not C-value, correlate with speciation in angiosperms
Angiosperms represent one of the key examples of evolutionary success, and their diversity dwarfs other land plants; this success has been linked, in part, to genome size and phenomena such as whole genome duplication events. However, while angiosperms exhibit a remarkable breadth of genome size, evidence linking overall genome size to diversity is equivocal, at best. Here, we show that the rat...
متن کاملAge at maturity and diversification in woody angiosperms.
Angiosperm diversification has been associated with plant-animal interactions such as seed dispersal and pollination and life-history characters such as rapid growth and fast reproduction. This paper relates a life-history character (age at maturity) to woody angiosperm diversification. Here I present a comparative analysis of data drawn from the literature, indicating that time to first reprod...
متن کاملExploring the Relationships between Mutation Rates, Life History, Genome Size, Environment, and Species Richness in Flowering Plants.
A new view is emerging of the interplay between mutation at the genomic level, substitution at the population level, and diversification at the lineage level. Many studies have suggested that rate of molecular evolution is linked to rate of diversification, but few have evaluated competing hypotheses. By analyzing sequences from 130 families of angiosperms, we show that variation in the synonym...
متن کاملThe evolution of plant genomes: scaling up from a population perspective.
Plant genomes exhibit tremendous diversity in both their size and structure, with genome sizes across land plants ranging over two to three orders of magnitude and significant variation in structural organization was observed across species (EA Kellogg, JL Bennetzen, The evolution of nuclear genome structure in seed plants, Am J Bot 2004, 91:1709-1725). Five plant genomes are now either complet...
متن کاملAbsolute diversification rates in angiosperm clades.
The extraordinary contemporary species richness and ecological predominance of flowering plants (angiosperms) are even more remarkable when considering the relatively recent onset of their evolutionary diversification. We examine the evolutionary diversification of angiosperms and the observed differential distribution of species in angiosperm clades by estimating the rate of diversification fo...
متن کامل